Меню

1000 000 как называется

Большие цифры: 1000000000 — как называется число?

Думали ли вы когда-нибудь, сколько нулей имеется в одном миллионе? Это довольно простой вопрос. А как насчет миллиарда или триллиона? Единица с девятью нулями (1000000000) — как называется число?

Краткий список чисел и их количественное обозначение

  • Десять (1 ноль).
  • Сто (2 нуля).
  • Тысяча (3 нуля).
  • Десять тысяч (4 нуля).
  • Сто тысяч (5 нулей).
  • Миллион (6 нулей).
  • Миллиард (9 нулей).
  • Триллион (12 нулей).
  • Квадриллион (15 нулей).
  • Квинтильон (18 нулей).
  • Секстиллион (21 нуль).
  • Септильон (24 нуля).
  • Октальон (27 нулей).
  • Нональон (30 нулей).
  • Декальон (33 нуля).

И так далее, вплоть до 100 нулей.

Группировка нулей

1000000000 — как называется число, у которого есть 9 нулей? Это миллиард. Для удобства большие числа принято группировать по три набора, отделяемых друг от друга при помощи пробела или таких знаков препинания, как запятая или точка.

Это делается для того, чтобы легче было читать и понимать количественное значение. Например, как называется число 1000000000? В таком виде стоит немного напречься, посчитать. А если написать 1,000,000,000, то сразу визуально задача облегчается, так считать нужно не нули, а тройки нулей.

Числа с очень большим количеством нулей

Из больших чисел наиболее популярными являются миллион и миллиард (1000000000). Как называется число, имеющее 100 нулей? Это цифра googol, называнная так еще Милтоном Сироттой. Это дико огромное количество. Считаете ли вы, что это число большое? Тогда как насчет googolplex, единицы, за которой следует googol нулей? Эта цифра настолько велика, что и смысл для нее придумать сложно. По сути, необходимости в таких гигантах нет, разве что подсчитывать число атомов в бесконечной Вселенной.

1 миллиард — это много?

Существуют две шкалы измерения — короткая и длинная. Во всем мире в области науки и финансов 1 миллиард составляет 1 000 миллионов. Это по короткой шкале. По ней это число с 9 нулями.

Существует также длинная шкала, которая используется в некоторых европейских странах, в том числе во Франции, и раньше использовалась в Великобритании (до 1971 года), где миллиард составлял 1 миллион миллионов, то есть единица и 12 нулей. Эту градацию еще называют долгосрочным масштабом. Короткая шкала теперь является преобладающей при решении финансовых и научных вопросов.

Некоторые европейские языки, такие как шведский, датский, португальский, испанский, итальянский, голландский, норвежский, польский, немецкий, используют миллиард (или биллион) имеенно в этой системе. В русском языке число с 9 нулями также описывается для короткой шкалы тысяча миллионов, а триллион — это миллион миллионов. Это позволяет избежать лишней путаницы.

Разговорные варианты

В русской разговорной речи после событий 1917 года — Великой Октябрьской революции — и периода гиперинфляции в начале 1920-х гг. 1 млрд. рублей называли «лимард». А в лихие 1990-е для миллиарда появилось новое сленговое выражение «арбуз», миллион называли «лимоном».

Слово «миллиард» теперь используется на международном уровне. Это натуральное число, которое изображается в десятичной системе, как 10 9 (единица и 9 нулей). Есть также и другое название — биллион, которое не используется в России и странах СНГ.

Миллиард = биллион?

Такое слово, как биллион, применяется для обозначения миллиарда только в тех государствах, в которых за основу принята «короткая шкала». Это такие страны, как Российская Федерация, Соединенное Королевство Великобритании и Северной Ирландии, США, Канада, Греция и Турция. В других странах понятие биллион означает число 10 12 , то есть один и 12 нулей. В странах с «короткой шкалой», в том числе в России, эта цифра соответствует 1 триллиону.

Такая неразбериха появилась во Франции в то время, когда происходило становление такой науки, как алгебра. Изначально у миллиарда было 12 нулей. Однако все изменилось после появления основного пособия по арифметике (автор Траншан) в 1558 году), где миллиард — это уже число с 9 нулями (тысяча миллионов).

Несколько последующих столетий эти два понятия употреблялись наравне друг с другом. В середине 20 века, а именно в 1948 году, Франция перешла на длинную шкалу системы числовых наименований. В связи с этим, короткая шкала, некогда позаимствованная у французов, все же отличается от той, которой они пользуются сегодня.

Исторически сложилось так, что Соединенное Королевство использовало долгосрочный миллиард, но с 1974 года официальная статистика Великобритании использовала краткосрочную шкалу. С 1950-х годов краткосрочная шкала все чаще использовалась в области технической письменности и журналистики, несмотря на то, что по-прежнему сохранялась долгосрочная шкала.

Источник

Названия чисел, и невероятно больших вечиличин

Названия больших чисел

Еще в четвертом классе меня заинтересовал вопрос: «А как называются числа больше миллиарда? И почему?». С тех пор я долго искал всю информацию по этому вопросу и собирал ее по крохам. Но с появлением доступа к Интернету поиск значительно ускорился. Теперь я представляю всю найденную мной информацию, чтоб и другие могли ответить на вопрос: «Как называются большие и очень большие числа?».

Южные и восточные славянские народы для записи чисел пользовались алфавитной нумерацией. Причем у русских роль цифр играли не все буквы, а только те, которые имеются в греческом алфавите. Над буквой, обозначавшей цифру, ставился специальный значок «титло». При этом числовые значения букв возрастали в том же порядке, в каком следовали буквы в греческом алфавите (порядок букв славянского алфавита был несколько иной).

В России славянская нумерация сохранилась до конца 17 века. При Петре I возобладала так называемая «арабская нумерация», которой мы пользуемся и сейчас.

В названиях чисел также происходили изменения. Например, до 15 века число «двадцать» обозначалось как «два десяти» (два десятка), но затем сократилось для более быстрого произношения. До 15 века число «сорок» обозначалось словом «четыредесяте», а в 15-16 веках это слово было вытеснено словом «сорок», которое исходно обозначало мешок, в который помещалось 40 беличьих или соболиных шкурок. О происхождении слова «тысяча» есть два варианта: от старого названия «толстое сто» или от модификации латинского слова centum — «сто».

Название «миллион» впервые появилось в Италии в 1500 г. и образовалось добавлением увеличительного суффикса к числу «милле» — тысяча (т.е. обозначало «большую тысячу»), в русский язык оно пронило позже, а до этого то же значение в русском языке обозначалось числом «леодр». Слово «миллиард» вошло в употребление лишь со времени франко-пруссой войны (1871 г.), когда французам пришлось уплатить Германии контрибуцию в 5 000 000 000 франков. Как и «миллион» слово «миллиард» происходит от корня «тысяча» с добавкой итальянского увеличительного суффикса. В Германии и Америке некоторое время под словом «миллиард» подразумевали число 100 000 000; этим объясняется, что слово миллиардер в Америке стало использоватся до того, как у кого-либо из богачей появилось 1000 000 000 долларов. В старинной (XVIII в.) «Арифметике» Магницкого, приводится таблица названий чисел, доведенная до «квадрильона» (10^24, по системе через 6 разрядов). Перельманом Я.И. в книге «Занимательная арифметика» приводятся названия больших чисел того времени, несколько отличающиеся от сегодняшних: септильон (10^42), октальон (10^48), нональон (10^54), декальон (10^60), эндекальон (10^66), додекальон (10^72) и написано, что «далее названий не имеется».

Читайте также:  Житель сан марино как называется

Принципы построения названий и список больших чисел

Все названия больших чисел построены довольно простым образом: в начале идет латинское порядковое числительное, а в конце к нему добавляется суффикс -иллион. Исключение составляет название «миллион» которое является названием числа тысяча (mille) и увеличительного суффикса -иллион. В мире существует два основных типа названий больших чисел:
система 3х+3 (где х — латинское порядковое числительное) — эта система используется в России, Франции, США, Канаде, Италии, Турции, Бразилии, Греции
и система 6х (где х — латинское порядковое числительное) — эта система наиболее распространена в мире (например: Испания, Германия, Венгрия, Португалия, Польша, Чехия, Швеция, Дания, Финляндия). В ней отсутствующие промежуточные 6х+3 заканчиваются суффиксом -иллиард (из нее мы заимствовали миллиард, который еще называется биллион).
Общий список чисел используемых в России представляю ниже:

Число Название Латинское числительное Увеличивающая приставка СИ Уменьшаяющая приставка СИ Практическое значение
101 десять дека- деци- Число пальцев на 2 руках
102 сто гекто- санти- Примерно половина числа всех государств на Земле
103 тысяча кило- милли- Примерное число дней в 3 годах
106 миллион unus (I) мега- микро- В 5 раз больше числа капель в 10-литровом ведере воды
109 миллиард (биллион) duo (II) гига- нано- Примерная численность населения Индии
1012 триллион tres (III) тера- пико- 1/13 внутреннего валового продукта России в рублях за 2003 год
1015 квадриллион quattor (IV) пета- фемто- 1/30 длины парсека в метрах
1018 квинтиллион quinque (V) экса- атто- 1/18 числа зерен из легендарной награды изобретателю шахмат
1021 секстиллион sex (VI) зетта- цепто- 1/6 массы планеты Земля в тоннах
1024 септиллион septem (VII) йотта- йокто- Число молекул в 37,2 л воздуха
1027 октиллион octo (VIII) неа- сито- Половина массы Юпитера в килограммах
1030 нониллион novem (IX) деа- тредо- 1/5 числа всех микроорганизмов на планете
1033 дециллион decem (X) уна- рево- Половина массы Солнца в граммах

Произношение чисел, идущих далее, часто различается.
Число Название Латинское числительное Практическое значение
1036 андециллион undecim (XI)
1039 дуодециллион duodecim (XII)
1042 тредециллион tredecim (XIII) 1/100 от количества молекул воздуха на Земле
1045 кваттордециллион quattuordecim (XIV)
1048 квиндециллион quindecim (XV)
1051 сексдециллион sedecim (XVI)
1054 септемдециллион septendecim (XVII)
1057 октодециллион Столько элементарных частиц на Солнце
1060 новемдециллион
1063 вигинтиллион viginti (XX)
1066 анвигинтиллион unus et viginti (XXI)
1069 дуовигинтиллион duo et viginti (XXII)
1072 тревигинтиллион tres et viginti (XXIII)
1075 кватторвигинтиллион
1078 квинвигинтиллион
1081 сексвигинтиллион Столько элементарных частиц во вселенной
1084 септемвигинтиллион
1087 октовигинтиллион
1090 новемвигинтиллион
1093 тригинтиллион triginta (XXX)
1096 антригинтиллион
.
10100 — гугол (число придумал 9-летний племянник американского математика Эдварда Каснера)
.
10123 — квадрагинтиллион (quadraginta, XL)
10153 — квинквагинтиллион (quinquaginta, L)
10183 — сексагинтиллион (sexaginta, LX)
10213 — септуагинтиллион (septuaginta, LXX)
10243 — октогинтиллион (octoginta, LXXX)
10273 — нонагинтиллион (nonaginta, XC)
10303 — центиллион (Centum, C)
Дальнейшие названия могут быть получены либо прямым, либо обратным порядком латинских числительных (как правильно, не известно):
10306 — анцентиллион или центуниллион
10309 — дуоцентиллион или центдуоллион
10312 — трецентиллион или центтриллион
10315 — кватторцентиллион или центквадриллион
10402 — третригинтацентиллион или центтретригинтиллион
Я считаю, что наиболее правильным будет второй вариант написания, так как он более соответствует построению числительных в латинском языке и позволяет избежать двухсмысленностей (например в числе трецентиллион, которое по первому написанию является и 10903 и 10312).
Числа далее:
10603 — дуцентиллион (ducenti, CC)
10903 — трецентиллион (trecenti, CCC)
101203 — квадрингентиллион (quadringenti, CD)
101503 — квингентиллион (quingenti, D)
101803 — сесцентиллион (sescenti, DC)
102103 — септингентиллион (septingenti, DCC)
102403 — октингентиллион (octingenti, DCCC)
102703 — нонгентиллион (nongenti, CM)
103003 — миллиллион (или милиаиллион) (mille, M)
106003 — дуомилиаллион (duo milia, MM)
109003 — тремиллиаллион
1015003 — квинквемилиаллион (quinque milia, )
10308760 — дуцентдуомилианонгентновемдециллион
103000003 — милиамилиаиллион (decies centena milia, )
106000003 — дуомилиамилиаиллион
1010100 — гуголплекс
Некоторые литературные ссылки:
Перельман Я.И. «Занимательная арифметика». — М.: Триада-Литера, 1994, стр. 134-140
Выгодский М.Я. «Справочник по элементарной математике». — С-Пб., 1994, стр. 64-65
«Энциклопедия знаний». — сост. В.И. Короткевич. — С-Пб.: Сова, 2006, стр. 257
«Занимательно о физике и математике».- Библиотечка Квант. вып. 50. — М.: Наука, 1988, стр. 50

Источник

У больших чисел громкие имена

В натуральном ряду можно найти конец всех наименований

Когда-то я прочитал один трагический рассказ, где повествуется о чукче, которого полярники научили считать и записывать цифры. Магия чисел настолько поразила его, что он решил записать в подаренной полярниками тетради абсолютно все существующие в мире числа подряд, начиная с единицы. Чукча забрасывает все свои дела, перестаёт общаться даже с собственной женой, не охотится больше на нерпу и тюленей, а всё пишет и пишет в тетрадь числа…. Так проходит год. В конце концов тетрадь заканчивается и чукча понимает, что он смог записать лишь малую часть всех чисел. Он горько плачет и в отчаянии сжигает свою исписанную тетрадку, чтобы вновь начать жить простой жизнью рыболова, не думая больше о таинственной бесконечности чисел…

Не будем повторять подвиг этого чукчи и пытаться найти самое большое число, так как любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Зададимся хоть и похожим, но другим вопросом: какое из чисел, имеющих собственное название, наибольшее?

Очевидно, что хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Так, например, числа 1 и 100 имеют собственные названия «единица» и «сто», а название числа 101 уже составное («сто один»). Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем, должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и найдём, в конце концов, это самое большое число!

Число

Латинское количественное числительное

Русская приставка

«Короткая» и «длинная» шкала

История современной системы наименования больших чисел ведёт начало с середины XV века, когда в Италии стали пользоваться словами «миллион» (дословно — большая тысяча) для тысячи в квадрате, «бимиллион» для миллиона в квадрате и «тримиллион» для миллиона в кубе. Об этой системе мы знаем благодаря французскому математику Николя Шюке ( Nicolas Chuquet , ок. 1450 – ок. 1500): в своём трактате «Наука о числах» (Triparty en la science des nombres, 1484) он развил эту идею, предложив дальше воспользоваться латинскими количественными числительными (см. таблицу), добавляя их к окончанию «-иллион». Так, «бимиллион» у Шюке превратился в биллион, «тримиллионом» в триллион, а миллион в четвёртой степени стал «квадриллионом».

В системе Шюке число 10 9 , находившееся между миллионом и биллионом, не имело собственного названия и называлось просто «тысяча миллионов», аналогично 10 15 называлось «тысяча биллионов», 10 21 — «тысяча триллионов» и т.д. Это было не очень удобно, и в 1549 году французский писатель и учёный Жак Пелетье (Jacques Peletier du Mans, 1517–1582) предложил поименовать такие «промежуточные» числа при помощи тех же латинских префиксов, но окончания «-иллиард». Так, 10 9 стало называться «миллиардом», 10 15 — «биллиардом», 10 21 — «триллиардом» и т.д.

Система Шюке-Пелетье постепенно стала популярна и ей стали пользоваться по всей Европе. Однако в XVII веке возникла неожиданная проблема. Оказалось, что некоторые учёные почему-то стали путаться и называть число 10 9 не «миллиардом» или «тысячей миллионов», а «биллионом». Вскоре эта ошибка быстро распространилась, и возникла парадоксальная ситуация — «биллион» стал одновременно синонимом «миллиарда» (10 9 ) и «миллиона миллионов» (10 18 ).

Эта путаница продолжалась достаточно долго и привела к тому, что в США создали свою систему наименования больших чисел. По американской системе названия чисел строятся так же, как в системе Шюке, — латинский префикс и окончание «иллион». Однако величины этих чисел отличаются. Если в системе Шюке названия с окончанием «иллион» получали числа, которые являлись степенями миллиона, то в американской системе окончание «-иллион» получили степени тысячи. То есть тысяча миллионов (1000 3 = 10 9 ) стала называться «биллионом», 1000 4 (10 12 ) — «триллионом», 1000 5 (10 15 ) — «квадриллионом» и т.д.

Старая же система наименования больших чисел продолжала использоваться в консервативной Великобритании и стала во всём мире называться «британской», несмотря на то, что она была придумана французами Шюке и Пелетье. Однако в 1970-х годах Великобритания официально перешла на «американскую систему», что привело к тому, что называть одну систему американской, а другую британской стало как-то странно. В результате, сейчас американскую систему обычно называют «короткой шкалой», а британскую систему или систему Шюке-Пелетье — «длинной шкалой».

Чтобы не запутаться, подведём промежуточный итог:

Название числа

Значение по «короткой шкале»

Значение по «длинной шкале»

Короткая шкала наименования используется сейчас в США, Великобритании, Канаде, Ирландии, Австралии, Бразилии и Пуэрто-Рико. В России, Дании, Турции и Болгарии также используется короткая шкала, за исключением того, что число 10 9 называется не «биллион», а «миллиард». Длинная же шкала в настоящее время продолжает использоваться в большинстве остальных стран.

Любопытно, что у нас в стране окончательный переход к короткой шкале произошёл лишь во второй половине XX века. Так, например, ещё Яков Исидорович Перельман (1882–1942) в своей «Занимательной арифметике» упоминает параллельное существование в СССР двух шкал. Короткая шкала, согласно Перельману, использовалась в житейском обиходе и финансовых расчётах, а длинная — в научных книгах по астрономии и физике. Однако сейчас использовать в России длинную шкалу неправильно, хотя числа там получаются и большие.

Но вернемся к поиску самого большого числа. После дециллиона названия чисел получаются путём объединения приставок. Так получаются такие числа как ундециллион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион, новемдециллион и т.д. Однако эти названия нам уже не интересны, так как мы условились найти наибольшее число с собственным несоставным названием.

Если же мы обратимся к латинской грамматике, то обнаружим, что несоставных названий для чисел больше десяти у римлян было всего три: viginti — «двадцать», centum — «сто» и mille — «тысяча». Для чисел больше, чем «тысяча», собственных названий у римлян не имелось. Например, миллион (1 000 000) римляне называли «decies centena milia», то есть «десять раз по сотне тысяч». По правилу Шюке, эти три оставшихся латинских числительных дают нам такие названия для чисел как «вигинтиллион», «центиллион» и «миллеиллион».

Название числа

Значение по «короткой шкале»

Значение по «длинной шкале»

Итак, мы выяснили, что по «короткой шкале» максимальное число, которое имеет собственное название и не является составным из меньших чисел — это «миллеиллион» (10 3003 ). Если бы в России была бы принята «длинная шкала» наименования чисел, то самым большим числом с собственным названием оказался бы «миллеиллиард» (10 6003 ).

Однако существуют названия и для ещё больших чисел.

Числа вне системы

Некоторые числа имеют собственное название, без какой-либо связи с системой наименования при помощи латинских префиксов. И таких чисел немало. Можно, к примеру, вспомнить число e, число «пи», дюжину, число зверя и пр. Однако так как нас сейчас интересуют большие числа, то рассмотрим лишь те числа с собственным несоставным названием, которые больше миллиона.

До XVII века на Руси применялась собственная система наименования чисел. Десятки тысяч назывались «тьмами», сотни тысяч — «легионами», миллионы — «леодрами», десятки миллионов — «воронами», а сотни миллионов — «колодами». Этот счёт до сотен миллионов назывался «малым счётом», а в некоторых рукописях авторами рассматривался и «великий счёт», в котором употреблялись те же названия для больших чисел, но уже с другим смыслом. Так, «тьма» означала уже не десять тысяч, а тысячу тысяч (10 6 ), «легион» — тьму тем (10 12 ); «леодр» — легион легионов (10 24 ), «ворон» — леодр леодров (10 48 ). «Колодой» же в великом славянском счёте почему-то называли не «ворон воронов» (10 96 ), а лишь десять «воронов», то есть 10 49 (см. таблицу).

Название числа

Значение в «малом счёте»

Значение в «великом счёте»

Обозначение

Число 10 100 также имеет собственное название и придумал его девятилетний мальчик. А дело было так. В 1938 году американский математик Эдвард Кэснер ( Edward Kasner , 1878–1955) гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта (Milton Sirott), предложил назвать это число «гуголом» (googol). В 1940 году Эдвард Кэснер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» , где и рассказал любителям математики о числе гугол. Еще более широкую известность гугол получил в конце 1990-х, благодаря названной в честь него поисковой машине Google.

Название для ещё большего числа, чем гугол, возникло в 1950 году благодаря отцу информатики Клоду Шеннону ( Claude Elwood Shannon , 1916–2001). В своей статье «Программирование компьютера для игры в шахматы» он попытался оценить количество возможных вариантов шахматной игры. Согласно ему, каждая игра длится в среднем 40 ходов и на каждом ходе игрок делает выбор в среднем из 30 вариантов, что соответствует 900 40 (примерно равное 10 118 ) вариантам игры. Эта работа стала широко известной, и данное число стало называться «числом Шеннона».

В известном буддийском трактате Джайна-сутры, относящемся к 100 году до н.э., встречается число «асанкхейя» равное 10 140 . Считается, что этому числу равно количество космических циклов, необходимых для обретения нирваны.

Девятилетний Милтон Сиротта вошёл в историю математики не только тем, что придумал число гугол, но и тем, что одновременно с ним предложил ещё одно число — «гуголплекс», которое равно 10 в степени «гугол», то есть единице с гуголом нулей.

Ещё два числа, большие, чем гуголплекс, были предложены южноафриканским математиком Стэнли Скьюзом (Stanley Skewes, 1899–1988) при доказательстве гипотезы Римана. Первое число, которое позже стали называть «первым числом Скьюза», равно e в степени e в степени e в степени 79, то есть e e e 79 = 10 10 8,85.10 33 . Однако «второе число Скьюза» ещё больше и составляет 10 10 10 1000 .

Очевидно, что чем больше в числе степеней в степенях, тем сложнее записывать числа и понимать их значение при чтении. Мало того, возможно придумать такие числа (и они, кстати, уже придуманы), когда степени степеней просто не помещаются на страницу. Да, что на страницу! Они не уместятся даже в книгу размером с всю Вселенную! В таком случае встаёт вопрос как же такие числа записывать. Проблема, к счастью, разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой, придумывал свой способ записи, что привело к существованию нескольких не связанных друг с другом способов для записи больших чисел — это нотации Кнута, Конвея, Штейнгауза и др. С некоторыми из них нам сейчас предстоит разобраться.

Иные нотации

В 1938 году, в тот же год, когда девятилетний Милтон Сиротта придумал числа гугол и гуголплекс, в Польше вышла книжка о занимательной математике «Математический калейдоскоп», написанная Гуго Штейнгаузом ( Hugo Dionizy Steinhaus , 1887–1972). Эта книга стала очень популярной, выдержала множество изданий и была переведена на многие языки, в том числе на английский и русский. В ней Штейнгауз, обсуждая большие числа, предлагает простой способ их записи, используя три геометрические фигуры — треугольник, квадрат и круг:

«n в треугольнике» означает «n n »,
«n в квадрате» означает «n в n треугольниках»,
«n в круге» означает «n в n квадратах».

Объясняя этот способ записи, Штейнгауз придумывает число «мега», равное 2 в круге и показывает, что оно равно 256 в «квадрате» или 256 в 256 треугольниках. Чтобы подсчитать его, надо 256 возвести в степень 256, получившееся число 3,2.10 616 возвести в степень 3,2.10 616 , затем получившееся число возвести в степень получившегося числа и так далее всего возводить в степень 256 раз. К примеру, калькулятор в MS Windows не может подсчитать из-за переполнения 256 даже в двух треугольниках. Приблизительно же это огромное число составляет 10 10 2.10 619 .

Определив число «мега», Штейнгауз предлагает уже читателям самостоятельно оценить другое число — «медзон», равное 3 в круге. В другом издании книги Штейнгауз вместо медзона предлагает оценить ещё большее число — «мегистон», равное 10 в круге. Вслед за Штейнгаузом я также порекомендую читателям на время оторваться от этого текста и самим попробовать записать эти числа при помощи обычных степеней, чтобы почувствовать их гигантскую величину.

Впрочем, есть названия и для больших чисел. Так, канадский математик Лео Мозер ( Leo Moser , 1921–1970) доработал нотацию Штейнгауза, которая была ограничена тем, что, если бы потребовалось записать числа много большие мегистона, то возникли бы трудности и неудобства, так как пришлось бы рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:

Таким образом, по нотации Мозера штейнгаузовский «мега» записывается как 2[5], «медзон» как 3[5], а «мегистон» как 10[5]. Кроме того, Лео Мозер предложил называть многоугольник с числом сторон равным меге — «мегагоном». И предложил число «2 в мегагоне», то есть 2[2[5]]. Это число стало известным как число Мозера или просто как «мозер».

Но даже и «мозер» не самое большое число. Итак, самым большим числом, когда-либо применявшимся в математическом доказательстве, является «число Грэма». Впервые это число было использовано американским математиком Рональдом Грэмом (Ronald Graham) в 1977 году при доказательстве одной оценки в теории Рамсея, а именно при подсчёте размерности определённых n-мерных бихроматических гиперкубов. Известность же число Грэма получило лишь после рассказа о нём в вышедшей в 1989 году книге Мартина Гарднера «От мозаик Пенроуза к надёжным шифрам».

Чтобы объяснить, как велико число Грэма, придётся объяснить ещё один способ записи больших чисел, введённый Дональдом Кнутом в 1976 году. Американский профессор Дональд Кнут придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:

Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Рональд Грэм предложил так называемые G-числа:

Вот число G64 и называется числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом, использованным в математическом доказательстве, и занесено даже в «Книгу рекордов Гиннеса».

И напоследок

Написав эту статью, не могу не удержаться от искушения и не придумать своё число. Пусть это число будет называться «стасплекс» и будет равно числу G100. Запомните его, и когда ваши дети будут спрашивать, какое самое большое в мире число, говорите им, что это число называется стасплекс.

Источник

Adblock
detector