Меню

1000000 как называется это число

Самое большое число в мире, которое что-то обозначает

Число Грэма — самое большое число в мире, которое что-то обозначает. Это не единица с огромным количеством нулей. Мы не можем его себе представить. Но давайте по порядку.

Миллион — 1.000.000. Обозначается как 10 в 6 степени. Мы легко можем представить миллион чего-то: миллион рублей, миллион долларов и т.п..

Миллиард — 1.000.000.000 или тысяча миллионов. Обозначается 10 в 9 степени. Представить миллиард чего-то мы тоже можем: 7 миллиардов человек живёт на нашей планете, 100 миллиардов звёзд в млечном пути.

Триллион — 1.000.000.000.000. Обозначается 10 в 12 степени. Триллион рыб живёт в мировом океане.

Квадриллион — 1.000.000.000.000.000. Обозначается 10 в 15 степени. Квадриллион муравьёв живёт на нашей планете.

Квинтиллион — 1.000.000.000.000.000.000. Обозначается 10 в 18 степени. Именно столько кубометров воды есть на земле.

Но это только начало!

Секстиллион — 1.000.000.000.000.000.000.000. Обозначается 10 в 21 степени. Около секстиллиона звёзд мы можем наблюдать в видимой части космоса. Её называют сферой Хаббла. Статья о ней скоро появится (уже появилась) на канале.

Септиллион — 1.000.000.000.000.000.000.000.000. Обозначается 10 в 24 степени. Наша планета весит септиллион килограммов или секстиллион тонн.

Квинквавигинтиллион — 10 в 78 степени. Сто квинквавигинтиллионов — количество субатомных частиц в видимой вселенной.

Гугол — 10 в степени 100. Существует теория, что через гугол лет последняя чёрная дыра взорвётся и вселенная сожмётся до первоначального состояния. Также существует число гуголплекс — 10 в степени гугол, гуголплексплекс — 10 в степени гуголплекс и так далее, но у этих чисел нет никакого значения. Это просто цифры.

10 в 185 степени — объём видимой вселенной с точки зрения планковских величин. Это наиболее маленький объём, который человек может представить и вычислить. Планковская длина приблизительно равна 1,616229(38) умножить на 10 в -35 степени метров.

10 в 500 степени — число возможных вселенных, если верить теории струн. Если хотите статью о ней — пишите в комментарии.

Числа Марсенна. Самое большое из них — 2 в степени 43.112.609 -1 (сорок три миллиона сто двенадцать тысяч шестьсот девять) — самое большое простое число, которое делится только на себя и на 1. Его длина — почти 13.000.000 цифр.

Число Скьюза. Записывается как 10 в степени 10 в степени 10 в степени 963. Обозначает верхний предел для математической задачи.

И вот наконец — число Грэма. Обозначает верхнюю границу решений задач с гиперкубом. Вспомним стрелочную нотацию Кнута, которая используется для обозначения больших числовых совокупностей. Суть метода состоит в добавлении вертикальных стрелок, вместо ступенчатых степеней. Вертикальную стрелку будем обозначать символом «|» Например 3|3=3 в степени 3 и равняется 27. 3||3=3 в степени 3 в степени 3 или 3 в степени 27 и равняется 7.625.597.484.987.

3|||3 это 3 с высотой столба степени 3 равной расстоянию от Земли до Марса. Количество троек в степени равняется 7.000.000.000.000. И заметьте, это не само число, а его степень! Математики обозначили его G1. Всего 5 троек из этой башни полностью покрывают гуголплекс, а первые 10 сантиметров ставят в тупик все существующие на Земле компьютеры. Дальше пустота и неведение. Далее идёт число G2, где количество стрелок равняется G1. Далее идёт G3, где количество стрелок равняется G2 и так далее. Всего таких чисел 64. G64 это и есть число Грэма. Записать его где либо невозможно, поэтому записывают формулой: G=f^64(4), где f(n)=3|^n3. (значок «^» обозначает степень: 1.000.000=10^6). Подсчитывать это бессмысленно. Число Грэма не поместится в тех самых 10 в степени 500 вселенных, даже если пронумеровать каждую частицу! Но мы всё же кое что знаем о нём. Вот последние 10 цифр этого числа: 2464195387. Первые цифры не знает никто. Возможно, через тысячи или десятки тысяч лет человечество всё-таки сможет его высчитать и оно станет элементарным и банальным.

Читайте также:  Как называются корабли в пиратах карибского моря

Подписывайтесь на канал ставьте лайки, делитесь своим мнение в комментариях.

Источник

Самое большое число в мире

Считается, что концепция чисел впервые возникла, когда доисторические люди начали использовать свои пальцы для подсчета чего-либо. С тех пор человечество прошло долгий путь. Теперь мы используем калькуляторы и компьютеры для подсчета самых больших чисел. И даже появились названия для чисел, которые настолько велики, что их с трудом можно представить.

Бесконечность счетных чисел

Казалось бы, ответ на вопрос о том, каково самое большое число в математике — очень прост. Бесконечность, верно? Но это не совсем правильно. Ведь бесконечность — вовсе не число, а концепция. Идея.

Бесконечность (infinitum) — это понятие, которое в переводе с латинского означает «без границ». Определение бесконечности в математике гласит, что независимо от того, насколько велико число, вы всегда можете добавить к нему 1, и оно станет больше.

Поэтому, строго говоря, не существует такого понятия, как самое большое число в мире. Можно лишь назвать наибольшее число, которому дали конкретное название.

Вот некоторые наиболее известные названия больших чисел:

Число нулей Название Название на английском
3 тясяча thousand
6 миллион million
9 миллиард (биллион) billion
12 триллион trillion
15 квадриллион quadrillion
18 квинтиллион quintillion
21 секстиллион sextillion
24 септиллион septillion
27 октиллион octillion
30 нониллион nonillion
33 дециллион decillion
36 ундециллион undecillion
39 дуодециллион duodecillion
42 тредециллион tredecillion
45 кватуордециллион quattuordecillion
48 квиндециллион quindecillion
51 сексдециллион sexdecillion
54 септендециллион septendecillion
57 октодециллион octodecillion
60 новемдециллион novemdecillion
63 вигинтиллион vigintillion
66 унвигинтиллион unvigintillion
69 дуовигинтиллион duovigintillion
72 тревигинтиллион trevigintillion
75 кватуорвигинтиллион quattuorvigintillion
78 квинвигинтиллион quinvigintillion
81 сексвигинтиллион sexvigintillion
84 септенвигинтиллион septenvigintillion
87 октовигинтиллион octovigintillion
90 новемвигинтиллион novemvigintillion
93 тригинтиллион trigintillion
96 унтригинтиллион untrigintillion
99 дуотригинтиллион duotrigintillion
102 третригинтиллион trestrigintillion
105 кватортригинтиллион quattuortrigintillion
108 квинтригинтиллион quintrigintillion
111 секстригинтиллион sextrigintillion
114 септентригинтиллион septentrigintillion
117 октотригинтиллион octotrigintillion
120 новемтригинтиллион novemtrigintillion
123 квадрагинтиллион quadragintillion
126 унквадрагинтиллион unquadragintillion
129 дуоквадрагинтиллион duoquadragintillion
132 треквадрагинтиллион trequadragintillion
135 кваторквадрагинтиллион quattuorquadragintillion
138 квинквадрагинтиллион quinquadragintillion
141 сексквадрагинтиллион sexquadragintillion
144 септенквадрагинтиллион septenquadragintillion
147 октоквадрагинтиллион octoquadragintillion
150 новемквадрагинтиллион novemquadragintillion
153 квинквагинтиллион quinquagintillion
156 унквинкагинтиллион unquinquagintillion
159 дуоквинкагинтиллион duoquinquagintillion
162 треквинкагинтиллион trequinquagintillion
165 кваторквинкагинтиллион quattuorquinquagintillion
168 квинквинкагинтиллион quinquinquagintillion
171 сексквинкагинтиллион sexquinquagintillion
174 септенквинкагинтиллион septenquinquagintillion
177 октоквинкагинтиллион octoquinquagintillion
180 новемквинкагинтиллион novemquinquagintillion
183 сексагинтиллион sexagintillion
186 унсексагинтиллион unsexagintillion
189 дуосексагинтиллион duosexagintillion
192 тресексагинтиллион tresexagintillion
195 кваторсексагинтиллион quattuorsexagintillion
198 квинсексагинтиллион quinsexagintillion
201 секссексагинтиллион sexsexagintillion
204 септенсексагинтиллион septensexagintillion
207 октосексагинтиллион octosexagintillion
210 новемсексагинтиллион novemsexagintillion
213 септагинтиллион septuagintillion
216 унсептагинтиллион unseptuagintillion
219 дуосептагинтиллион duoseptuagintillion
222 тресептагинтиллион treseptuagintillion
225 кваторсептагинтиллион quattuorseptuagintillion
228 квинсептагинтиллион quinseptuagintillion
231 секссептагинтиллион sexseptuagintillion
234 септенсептагинтиллион septenseptuagintillion
237 октосептагинтиллион octoseptuagintillion
240 новемсептагинтиллион novemseptuagintillion
243 октогинтиллион octogintillion
246 уноктогинтиллион unoctogintillion
249 дуооктогинтиллион duooctogintillion
252 треоктогинтиллион treoctogintillion
255 кватороктогинтиллион quattuoroctogintillion
258 квиноктогинтиллион quinoctogintillion
261 сексоктогинтиллион sexoctogintillion
264 септоктогинтиллион septoctogintillion
267 октооктогинтиллион octooctogintillion
270 новемоктогинтиллион novemoctogintillion
273 нонагинтиллион nonagintillion
276 уннонагинтиллион unnonagintillion
279 дуононагинтиллион duononagintillion
282 тренонагинтиллион trenonagintillion
285 кваторнонагинтиллион quattuornonagintillion
288 квиннонагинтиллион quinnonagintillion
291 секснонагинтиллион sexnonagintillion
294 септеннонагинтиллион septennonagintillion
297 октононагинтиллион octononagintillion
300 новемнонагинтиллион novemnonagintillion
303 центиллион centillion

Как называется самое большое простое число

Простое число — то, которое делится только на себя и на единицу. В конце 2018 года американец Патрик Лярош представил научному миру самое большое простое число.

  • Длина его — 24 862 048 символов. Для сравнения: в эпохальном произведении Л.Н. Толстого «Война и мир» около 6-7 миллионов символов, если учитывать знаки препинания и пробелы.
  • Это число можно записать следующим образом: 2 82589933 -1
  • А читается оно так: два в степени 82589933 минус один.
  • Существует целый онлайн-проект GIMPS, нацеленный как раз на поиск самых больших простых чисел. В нем принимают участие математики из разных стран. Поэтому новые рекордсмены появляются часто. Работают ученые, что называется, не за страх, а за деньги. Ведь тому, кто откроет следующее наибольшее простое число Мерсенна достанется 3000 долларов.

Какое самое большое число в мире

В 1980 году в Книгу рекордов Гиннеса вошло число Грэма (оно же G64 или G), названное в честь американского математика Рональда Грэма. Оно является наибольшим числом, которое когда-либо использовалось в важном математическом доказательстве. Речь идет про теорию Франка Рамсея.

Кратко об этой теории: представим себе N-мерный куб, его вершины в случайном порядке соединены красными или синими отрезками-линиями. А наша задача — понять, до какого значения N возможно (если по-разному закрашивать ребра куба), избежать ситуации, при которой одна плоскость в кубе будет окрашена одним цветом. То есть у нас не должен получиться одноцветный «конвертик».

Математики позакрашивали кубик и так и эдак, получилось, что до шестимерного куба можно исхитриться и сделать, чтобы линии одного цвета, соединяющие четыре вершины, не лежали в одной плоскости. А вот с семимерным, как выяснили Грэм и Ротшильд, такой фокус уже не провернешь. И с восьмимерным. И… «и так далее», которое, впрочем, не бесконечно, а заканчивается фантастически гигантским числом. Вот его-то и именуют числом Грэма. Кстати, в настоящее время решение Грэма и Ротшильда устарело. Математики выяснили, что 6-7-8-9-10-11-12-мерные кубы все же можно покрасить без «конвертов». Но где-то в промежутке между 13 и числом Грэма гарантированно есть число выше которого «конверты» в любом случае будут.

Число Грэма получило всемирное признание в 1977 году, когда известный популяризатор науки Мартин Гарднер написал об этом в Scientific American.

И хотя с тех пор в математической науке были и другие кандидаты на титул самого большого числа, «детище» Грэма является самым распиаренным и общеизвестным. И если вы слышали про «гугольное семейство»:

  • гугол — 10 100 ;
    Или: 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
  • гуголплекс — 10 гугол ,

то знайте, что этими числами в математике лишь «разминаются», а число Грэма в немыслимое количество раз больше, чем они. И даже больше, чем число Скьюза, находящееся между 10 19 и 1,3971672·10 316 и приблизительно равное e 727,951336108 .

Любопытно, что придумав гугол американский математик Эдвард Казнер хотел показать студентам разницу между невероятно большим числом и бесконечностью. Тогда число Грэма может просто «взорвать мозг».

Возможно ли представить и записать число за гранью понимания

Математики не смогут назвать вам точное количество цифр в числе Грэма, не говоря уже о том, чтобы досчитать до него. Известны лишь последние 50 цифр самого большого числа в мире — это …03222348723967018485186439059104575627262464195387.

А вот цифры, с которых начинается G64 неизвестны, и вряд ли когда-либо будут.

Давайте сравним трех монстров: гугол, гуголплекс и число Грэма.

  • Гугол — это количество песчинок, которые могут поместиться во вселенной, умноженное на 10 миллиардов. Итак, представьте себе вселенную, заполненную мелкими песчинками — на десятки миллиардов световых лет над Землей, под ней, перед ней, позади нее — бесконечный песок.

Теперь представьте, что в какой-то момент вы берете одну песчинку, чтобы рассмотреть ее под мощным микроскопом. И видите, что на самом деле это не единственное зерно, а 10 миллиардов микроскопических зерен, а все вместе они размером с песчинку. Если бы это было так для каждой отдельной песчинки в этой гипотетической вселенной, то общее количество этих микроскопических зерен было бы гуголом.

  • Для количественной оценки гуголплекса астроном и астрофизик Карл Саган привел пример заполнения всего объема наблюдаемой вселенной мелкими частицами пыли размером приблизительно 1,5 микрометра. Исходя из этого, общее количество различных комбинаций, в которых эти частицы могут быть расположены, будет равно примерно одному гуголплексу.
  • А теперь представим, что гуголплекс — это даже не песчинка, а крохотная точка, которую можно рассмотреть лишь в самый мощный микроскоп. И у нас вся вселенная заполнена такими крохотными точками. Так вот, даже это не идет ни в какое сравнение с числом Грэма. Но что, если мы хотим использовать все пространство наблюдаемой вселенной для его записи (предположим, что запись каждой цифры занимает как минимум объём Планка)? Увы, у нас это не выйдет! Но всегда можно пойти другим путем.

Как записать G64 с помощью метода Кнута

В 1976 году американский ученый Дональд Кнут предложил понятие сверхстепеней или нотацию Кнута. Это метод, позволяющий при помощи стрелочек, направленных вверх, записывать очень большие числа. Возведение в степень обозначается одной стрелкой вверх: ↑.

Вот как выглядит эта нотация: a ↑ b = ab = a × a × a × …, и так b раз.

  • Например 3↑3 = 3³.
  • Гугол записывается так 10↑10↑2.
  • А гуголплекс — 10↑10↑10↑2

Важной особенностью стрелок вверх является то, что они растут очень быстро. Экспонентация растет гораздо быстрее, чем умножение. 2 × 10 — это всего лишь 20, но 2↑10 = 1024. Таким же образом, каждый новый уровень стрелок растет намного быстрее, чем предыдущий уровень.

Если мысленно представить себе степенную башню из троек 3↑↑↑4 то получится конструкция, размером от Земли до Марса. А ведь мы еще даже не дошли до «нижней ступеньки», ведущей нас к числу Грэма.

Мы можем описать число Грэма огромным набором этих стрелок вверх.

Проще всего думать об этом как об итерационном процессе. Мы начинаем снизу с g 1 = 3 ↑↑↑↑ 3, а затем создаем вторую строку (назовем ее g 2) с g 1 стрелками между тройками.

Тогда g 3 — это две тройки, разделенные g 2 стрелками вверх и так далее, пока g 64 с g 63 стрелками между тройками не будет числом Грэма.

Если выбрать продолжительность жизни, равную числу Грэма вместо бессмертия, то результат будет практически одинаков. Даже если предположить, что условия во Вселенной, в Солнечной системе и на Земле вечно останутся неизменными, человеческий мозг никак не мог бы выдержать столь длинный промежуток времени без пагубных изменений.

Источник

Adblock
detector