Меню

4 степень в математике как называется

Таблица степеней

Основные понятия

Степень числа — это результат многократного умножения числа на себя. Само число называют основанием степени, а количество операций умножения — показателем степени.

Показатель степени всегда натуральное число — это значит, что его можно использовать при счете или перечислении предметов:

  • a n = a * a *. * a, где a — основание степени,
  • n — натуральный показатель степени.

Запись читается, как «a» в степени «n».

Вот пример для наглядности:

  • 3 5 = 3 * 3 * 3 * 3 * 3 = 243

Эту запись можно прочитать тремя способами:

  • 3 в 5 степени;
  • пятая степень числа три;
  • возвести число три в пятую степень.

Свойства степеней

Свойства степеней обычно используют, чтобы сократить или упростить сложные примеры. Удобно использовать вместе с таблицей степеней и таблицей умножения.

Таблица степеней от 1 до 10

Таблица степеней — это перечень чисел от 1 до 10 возведенных в степень от 1 до 10. Ниже приведены два вида таблиц, выберите ту, которая удобнее для вас — скачайте на телефон или распечатайте и положите в учебник.

Как найти необходимые значения в этой таблице:

  • В первом столбце находим число, которое обозначает степень. Запомним номер этой строки.
  • В первой строке находим показатель степени. Запомним найденный столбец.
  • На пересечении строки и столбца находится ответ.

В этой табличке мы просто ищем нужное нам число в степени и получаем ответ.

А если ответ нужно получить как можно быстрее, можно использовать онлайн калькулятор. Вот несколько подходящих:

Алгебра — предмет серьезный: при переходе в новый класс багаж формул и правил будет только увеличиваться. Поэтому важно запоминать все последовательно и практиковаться на примерах.

Решение задач

Задание 1. Упростить и решить выражение 5 2 * 5 3 .

5 2 * 5 3 = 5 2+3 = 5 5 = 3125

Задание 2. Упростить и решить выражение 2 4 * 3 3 * 2 5 .

2 4 * 3 3 * 2 5 = 2 4+5 * 3 3 = 2 9 * 3 3 = 512 * 27 = 13824

Задание 3. Найти 36 4 .

При условии, что у нас есть только таблица до 10, разложим основание степени на множители:

36 4 = 6 4 * 6 4 = 1296 * 1296 = 1679616

36 4 = 6 4 * 6 4 = 6 8 = 1679616

Запомнить все и сразу бывает сложно, но чем больше задачек решит ваш ребенок, тем меньше придется заглядывать в шпаргалки. Запишитесь на бесплатный вводный урок в детскую онлайн-школу Skysmart. Мы подобрали тысячи увлекательных заданий: от простых логических загадок до хитрых головоломок, над которыми интересно подумать.

Источник

Сложение и вычитание степеней

Что такое степень числа

В учебниках по математике можно встретить такое определение:

«Степенью n числа а является произведение множителей величиной а n-раз подряд»

  • a n — степень,

a — основание степени

n — показатель степени

Соответственно, a n = a·a·a·a. ·a

Читается такое выражение, как a в степени n.

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить данное число (основание степени) на само себя. А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например число 2, то решается она довольно просто:

  • 2 3 = 2·2·2, где

2 — основание степени

3 — показатель степени

Действия, конечно, можно выполнять и в онлайн калькуляторе — вот несколько подходящих:

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

Число

Вторая степень

Третья степень

Свойства степеней: когда складывать, а когда вычитать

Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — давайте их рассмотрим.

Свойство 1: произведение степеней

При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:

  • a m· a n = a m+n

a — основание степени

m, n — показатели степени, любые натуральные числа.

Свойство 2: частное степеней

Когда мы делим степени с одинаковыми основаниями, то основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

Свойство 3: возведение степени в квадрат

Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.

  • (a n ) m = a n · m

a — основание степени (не равное нулю)

m, n — показатели степени, натуральное число

Свойство 4: степень возведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

  • (a · b) n = a n · b n

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

Свойство 5: степень частного

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

  • (a : b) n = a n : b n

a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0,

n — показатель степени, натуральное число

Сложение и вычитание степеней

Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания. Примеры:

  • 2 3 + 3 4 = 8 + 81= 89
  • 6 3 — 3 3 = 216 — 27 = 189

И еще несколько правил:

  • при наличии скобок — начинать вычисления нужно внутри них
  • только потом возведение производим в степень
  • затем выполняем остальные действия: сначала умножение и деление
  • после — сложение и вычитание

Сложение степеней с разными показателями

В таком случае действуем согласно общему правилу: сначала выполняем возведение в степень каждого числа, затем — производим сложение.

Сложение степеней с разными основаниями

В целом, это ничем не отличается от предыдущего пункта. Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим сложение.

  • 3 4 + 5 4 =81 + 625 = 706
  • 1 4 + 7 2 = 1+ 49 = 50

Как складывать числа с одинаковыми степенями

Точно также, как и в предыдущем примере. Если степени одинаковые, а основания разные, то нельзя сложить основания и затем эту сумму возводить в степень.
Сначала возводим каждое число в степень и затем выполняем сложение.

  • 6 3 +3 3 = 216 + 27 = 243

В уравнениях это будет происходить немного иначе. Если показатель и основание степени одинаковые (тогда это называется переменная, a 2 , например) — их коэффициенты можно складывать. Коэффициент — это число перед переменной a 2 .

2, 3, 5 — коэффициенты

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Вычитание степеней с одинаковым основанием

Здесь принцип тот же, что и со сложением: возводим в степень числа и только потом вычитаем их.

  • 6 3 — 3 3 = 216 — 27 = 189

Вычитание степеней с разными основаниями

Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим вычитание.

  • 5 4 — 4 4 = 625 — 256 = 369
  • 7 4 — 3 2 = 2401 — 9 = 2392

Вычитание чисел с одинаковыми степенями

Все точно также, как и со сложением. Если степени одинаковые, а основания разные, то нельзя вычесть основания и затем эту разницу возводить в степень. Сначала возводим каждое число в степень и затем выполняем вычитание.

  • 6 3 — 3 3 = 216 — 27 = 189

И та же история с коэффициентами: если показатель степени и основание степени одинаковые (тогда это называется переменная, a 2 ) — их коэффициенты можно вычитать. Коэффициент — это число перед переменной a 2 .

6, 3, 2 — коэффициенты

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Подготовиться к сложной контрольной ребенку помогут в детской онлайн-школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. Запишите вашего ребенка на бесплатный вводный урок математики и начните заниматься ей с удовольствием уже завтра.

Источник

4 степень в математике как называется

Ключевые слова конспекта: степень с натуральным показателем, основание степени, показатель степени, возведение в степень, дисперсия, умножение и деление степеней, свойства степеней.

Произведение 7 • 7 • 7 • 7 • 7 записывают короче: 7 5 . Выражение вида 7 5 называют пятой степенью числа 7 (читают: «семь в пятой степени»). В записи 7 5 число 7, которое означает повторяющийся множитель, называют основанием степени, а число 5, показывающее, сколько раз этот множитель повторяется, называют показателем степени.

Умножим 7 5 на 7 3 :
7 5 • 7 3 = (7 • 7 • 7 • 7 • 7) • (7 • 7 • 7) = 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 = 7 8 .
Показатель степени увеличился на 3. Естественно считать, что 7 = 7 1 . Вообще считают, что первой степенью числа является само число. Например, 18 1 = 18, 104 1 = 104.

Степень с натуральным показателем

✅ Определение. Степенью числа а с натуральным показателем n, большим 1, называют выражение а n , равное произведению n множителей, каждый из которых равен а.
Степенью числа а с показателем 1 называют выражение а 1 , равное а.

По определению

Запись а n читается так: «а в степени n» или «n-я (энная) степень числа а». Для второй и третьей степеней числа используют специальные названия: вторую степень числа называют квадратом, а третью степень — кубом.

Возведение в степень

Нахождение n-й степени числа а называют возведением в n-ю степень.

Пример 1. Возведём число -3 в четвёртую и пятую степени:
(-3) 4 = (-3) • (-3) • (-3) • (-3) = 81;
(-3) 5 = (-3) • (-3) • (-3) • (-3) • (-3) = -243.

Из свойств умножения следует, что:

  • при возведении нуля в любую степень получается нуль;
  • при возведении положительного числа в любую степень получается положительное число;
  • при возведении отрицательного числа в степень с чётным показателем получается положительное число, а при возведении отрицательного числа в степень с нечётным показателем — отрицательное число.

Пример 2. Возведём число 6,1 в седьмую степень, воспользовавшись калькулятором. Для этого надо выполнить умножение:
6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1.
Калькулятор позволяет выполнять возведение в степень проще, не повторяя основание степени и знак умножения. Для того чтобы возвести число 6,1 в седьмую степень, достаточно ввести число 6,1, нажать клавишу УМНОЖИТЬ и шесть раз нажать клавишу РАВНО . Получим, что 6,1 7 = 314274,28.

При вычислении значений числовых выражений, не содержащих скобки, принят следующий порядок действий: сначала выполняют возведение в степень, затем умножение и деление, далее сложение и вычитание.

Пример 3. Найдём значение выражения -6 2 + 64 : (-2) 5 . Последовательно находим:
1) 6 2 = 36;
2) (–2) 5 = –32;
3) 64 : (–32) = –2;
4) –36 + (–2) = –38.

Пример 4. Найдём множество значений выражения 5 • (–1) n + 1 + 2, где n N.
Если n — нечётное число, то (-1) n + 1 = 1; тогда 5 • (-1) n + 1 + 2 = 5 • 1 + 2 = 7.
Если n — чётное число, то (-1) n + 1 = -1; тогда 5 • (-1) n + 1 + 2 = 5 • (-1) + 2 = -5 + 2 = -3.
Множество значений данного выражения: <-3; 7>.

В рассмотренном примере было указано, что n N. Условимся в дальнейшем такое указание опускать и считать, что если показатель степени содержит переменную, то значениями этой переменной являются натуральные числа.

Дисперсия

Степень с натуральным показателем широко используется в естествознании для вычисления различных характеристик. Например, в статистике, для того чтобы узнать, как числа некоторой выборки расположены по отношению к среднему арифметическому этой выборки, используют отклонения, их квадраты и среднее арифметическое квадратов отклонений — дисперсию.

Пример 5. Дана выборка: 4, 6, 7, 8, 10. Среднее арифметическое этой выборки равно 7. Тогда отклонения вариант данной выборки от среднего арифметического равны: 4 – 7 = –3, 6 – 7 = –1, 7 – 7 = 0,8 – 7 = 1, 10 – 7 = 3, т. е. мы получили ещё один набор чисел — отклонения каждой варианты выборки от среднего арифметического. По новой выборке (–3; –1; 0; 1; 3) можно судить о том, насколько близки к среднему арифметическому числа исходного набора. Но поскольку сумма отклонений равна нулю, то и среднее арифметическое этой новой выборки также равно нулю. Поэтому для дальнейших исследований исходного набора находят квадраты отклонений и их среднее арифметическое

Полученное число и есть дисперсия исходной выборки.

Умножение степеней

Представим произведение степеней а 5 и а 2 в виде степени:
а 5 • а 2 = (а • а • а • а • а) • (а • а) = а • а • а • а • а • а • а = а 7 .
Мы получили степень с тем, же основанием и показателем, равным сумме показателей множителей. Подмеченное свойство выполняется для произведения любых двух степеней с одинаковыми основаниями.

Если а — произвольное число, m и n — любые натуральные числа, то а m • а n = а m+ n

Докажем это. Из определения степени и свойств умножения следует, что

Доказанное свойство называется основным свойством степени. Оно распространяется на произведение трёх и более степеней. Это нетрудно показать с помощью таких же рассуждений.

Из основного свойства степени следует правило:

  • чтобы перемножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели степеней сложить.

Деление степеней

Представим теперь в виде степени частное степеней а 8 и а 3 , где а ≠ 0. Так как а 3 • а 5 = а 8 , то по определению частного а 8 : а 3 = а 5 .

Мы получили степень с тем же основанием и показателем, равным разности показателей делимого и делителя. Такое свойство выполняется для частного любых степеней с одинаковыми основаниями, не равными нулю, у которых показатель делимого больше показателя делителя.

Если а — произвольное число, не равное нулю, m и n — любые натуральные числа, причём m > n, то а m : а n = а m — n , где а ≠ 0, m ≥ n

Докажем это. Умножим а m — n на а n , используя основное свойство степени:
a m – n • a n = a (m – n) + n = a m – n + n = a m

Из доказанного свойства следует правило:

  • чтобы выполнить деление степеней с одинаковыми основаниями, надо основание оставить тем же, а из показателя делимого вычесть показатель делителя.

Степень с нулевым показателем

Мы рассматривали степени с натуральными показателями. Введём теперь понятие степени с нулевым показателем.

✅ Определение. Степенью числа а, где а ≠ 0, с нулевым показателем называется выражение а 0 , равное 1 .

Например, 5 0 = 1; (–6,3) 0 = 1. Выражение 0 0 не имеет смысла.

Это конспект по математике на тему «Степени. Свойства степеней». Выберите дальнейшие действия:

Источник

Читайте также:  Альбом для зарисовок как называется
Adblock
detector