Меню

Амплитуда колебаний маятника как называется

Что такое амплитуда колебаний?

Амплитуда колебаний — максимальное отклонение от положения равновесия или от среднего значения при колебательном или волновом движении. Является неотрицательной скалярной величиной, имеющей размерность, совпадающую с размерностью изменяющейся величины.

Простым языком, в чем разница между Фпс и Гц?

фпс — это частный случай герца)

Герцами измеряют количество повторяющегося явления за единицу времени. Чего угодно — колебаний кадила у попа, мяуканий кота, вдоха/выдоха.

ФПС — это «frames per second» («кадры в секунду»), то есть сколько раз один кадр видео сменяет другой и формирует полноценный видеоряд за одну секунду.
В домашних камерах порядка 25fps, в скоростных камерах — тысячи fps.
В современных компьютерных играх комфортными считаются 60 fps.

Почему в качестве единицы времени используют атомную секунду?

В качестве единицы времени используют атомную, а не солнечную секунду из-за колоссальной точности (секунда — это время, в течение которого происходит 9 192 631 770 световых колебаний изотопа цезия).

Как связаны FPS и частота обновления монитора?

Частота обновления монитора и FPS связаны напрямую.

Частота обновления монитора — это частота обновления картинки, показывающая через какой промежуток времени один кадр сменится другим.

FPS — это количество кадров, показываемых в секунду. На каждый кадр выделяется определенный промежуток времени, спустя которой он сменится другим.

Пример: 60 FPS — что это? Это число, показывающее, что за 1 секунду сменятся 60 кадров, то есть на каждый кадр выделяется 16,(66) миллисекунд. Чтобы увидеть эту смену, надо иметь монитор, изображение на котором меняется каждые 16,(66) миллисекунд или чаще. Частота такого монитора — 60 Гц и выше.

Если частота будет в районе 50 Гц, то некоторые кадры будут теряться, так как смена их будет чаще, чем смена кадров на мониторе. Получится так, что монитор с частотой в 50 Гц никогда не покажет вам видео или игру с частотой кадров в 60 FPS.

Вы будете видеть 50 из 60 кадров в секунду, поэтому для вас картинка будет казаться менее плавной, чем для владельцев мониторов с частотой обновления 60 Гц или 144 Гц, отсутствие плавности будет компенсироваться размытием, поэтому картинка будет еще и менее четкой.

3 7 · Хороший ответ

Чем центростремительное ускорение отличается от центробежного?

Рассмотрим движение тела по окружности. Центростремительная сила – это та сила, которая заставляет тело двигаться по окружности. Эта сила направлена всегда к центру окружности, по которой движется данное тело. Этим и обусловлено ее название. Например, если шарик, привязанный к нити, вращается по окружности вокруг точки закрепления другого конца нити, то центростремительной силой является сила натяжения нити, действующая со стороны нити на шарик. Если планета вращается по круговой орбите вокруг звезды (на самом деле вокруг общего центра масс), то центростремительной силой является сила гравитационного притяжения, действующая на планету со стороны звезды. Тут все ясно и просто.
Центробежная сила – это сила инерции, то есть сила, которая может появиться ТОЛЬКО в неинерциальных системах отсчета. Если вы перейдете в СО, связанную с шариком, который вращается на нити по окружности, то центробежная сила в любой момент времени будет равна силе, с которой шарик действует на нить. В технической литературе часто под центробежной силой понимают силу, действующую со стороны тела, движущегося по окружности, на связи, вызывающие это движение, при этом, не переходя в неинерциальную СО. Формально это неверно, но технарям так удобнее из практических соображений.
Возникает вопрос, зачем нужны силы инерции и, в частности, для чего придумали центробежную силу? Смысл в том, что когда мы переходим в неинерциальную СО, то 2-й закон Ньютона нарушается: на тело продолжают действовать физические силы, но тело покоится! Так вот, если ввести в рассмотрение дополнительную «внешнюю» силу, которая уравновешивает сумму всех физических сил, то 2-й закон Ньютона будет выполняться. А это значит, что, благодаря таким «внешним» силам, любая задача механики в неинерциальной СО решается точно так же, как и в ИСО. Именно для этого и нужны такие «внешние» силы, которые получили название сил инерции.

Читайте также:  Как называется гибрид яка и коровы

Источник

Что такое амплитуда колебаний математического маятника?

Амплитуда колебаний математического маятника — наибольшее отклонение этого маятника от положения равновесия. Для математического маятника это как длина дуги, так и длина хорды, соединяющих точку наибольшего отклонения с положением равновесия.

Если волна это возмущение среды, то электромагнитная волна это возмущение чего?

Модератор дал ссылки, по которым нет ни одного вразумительного ответа.

А ответ прост до банальности.

Электромагнитная волна — это возмущение электромагнитного поля.

Электромагнитное поле — среда для распространения электромагнитной волны.

Особые свойства этой среды (огромная упругость и очень низкая плотность) приводят к очень большой скорости распространения ЭМ-волн.

Что человечеству дало доказательство гипотезы Пуанкаре?

Начнем с этого, что представляет собой гипотеза Пуанкаре. Ее определение звучит так: «Всякое замкнутое n-мерное многообразие гомотопически эквивалентно n-мерной сфере тогда и только тогда, когда оно гомеоморфно ей». Что это значит?

Представим себе шар из теста. При желании из него можно вылепить практически что угодно — фигурку животного, куб, трапецию или конус. Форм действительно очень много. В теперь возьмем бублик. Эта форма в математике называется «тор». Как бы вы ни старались, создать из тора шар или другой сплошной объект у вас не получится — отверстие никуда не денется. Собственно, сама гипотеза Пуанкаре состоит в том, что из фигуры можно сделать сферу, только если она не имеет форму тора.

Доказательство этой гипотезы российским математиком Григорием Перельманом привело к некоторым очень интересным выводам с точки зрения нашего понимания мира. Например, если эта гипотеза верна, соответсвенно, нашу Вселенную, представленную в виде сферы, можно свернуть в точку. Это, в свою очередь, значит, что теории Большого сжатия и Большого взрыва могут быть верны — доказанная гипотеза косвенно подтверждает их. Но это только один из эффектов доказанной «задачи тысячелетия». По мере совершенствования науки и техники мы несомненно найдем ей все больше применений.

Источник

Математический маятник — определение, формулы и принцип действия

Простая гравитация

Так называемый простой маятник — это всего лишь идеализированная математическая модель. Это груз на конце безмассового шнура, подвешенного на оси без трения. Если его толкнуть, он будет раскачиваться с постоянной амплитудой, но с некоторыми условиями:

  1. Стержень или нить, на котором качается отвес, не имеет массы и не может растягиваться.
  2. Груз — это точечная масса.
  3. Движение происходит только в двух измерениях, то есть отвес не может очертить эллипс, а только дугу.
  4. Энергия движения не расходуется на трение или сопротивление воздуха.
  5. Гравитационное поле однородно.
  6. Поддержка всей конструкции не двигается.

Дифференциальное уравнение, которое представляет движение простого маятника, выглядит следующим образом (где g — ускорение силы тяжести, ℓ — длина маятника, θ — угловое смещение): d² / dt² + g / ℓ sin θ = 0.

На графике 1 показаны силы, действующие на отвес. Стоит обратить внимание, что груз описывает дугу. Угол θ измеряется в радианах, и это имеет решающее значение для этой формулы. Синяя стрелка — гравитационная сила, которая действует на маятник, а фиолетовые векторы — это та же самая сила, только разложенная на компоненты, параллельные и перпендикулярные мгновенному движению груза.

Направление мгновенной скорости всегда указывается вдоль красной оси, которая считается тангенциальной, поскольку её направление всегда касается окружности. И прежде чем вывести уравнение силы деривации, стоит вспомнить второй закон Ньютона: F = ma. За F принимают сумму сил, действующих на объект, m — масса, a — ускорение.

Поскольку интерес составляет только измерение скорости, а груз вынужден оставаться на круговой траектории, уравнение Ньютона применяется только к тангенциальной оси. Короткая фиолетовая стрелка представляет компонент гравитационной силы, используя тригонометрию можно определить её величину. Таким образом, получается (g — ускорение силы тяжести вблизи поверхности земли): F = — mg sin θ = ma; a = — g sin θ.

Отрицательный знак на правой стороне означает, что θ и отвес всегда указываются в противоположных направлениях. Это вполне логично, поскольку когда маятник качается сильнее влево, ожидается, что он ускорится при движении назад — вправо. Это линейное ускорение, a вдоль красной оси может быть связано с изменением угла θ по формулам длины дуги (s): s = ℓθ; v = ds / dt = ℓdθ / dt; a = d²s / dt² = ℓd²θ / dt². Из этого следует: ℓd²θ/dt² = — gsin θ, d²θ / dt² + d / ℓ sin θ = 0.

Читайте также:  Как называется программа для создания таблиц на компьютере

Крутящий момент

Для начала нужно определить этот показатель на маятниковом шарнире, используя силу, вызванную гравитацией (Fg): T = ℓ x Fg, где ℓ — векторы длины маятника.

Здесь самое время рассмотреть величину крутящего момента на маятнике: |T| = — mgℓ sinθ, где m — масса, g — ускорение силы тяжести, ℓ — длина, а θ — угол между вектором длины и гравитацией. Далее, самое время переписать момент импульса: L = r x p = mr x (ꞷ x r).

Просто величина углового момента и его производная по времени: |L| = mr² w = mℓ² d²θ / dt². ​Формула крутящего момента после всех вычислений будет выглядеть следующим образом: T = r x F = dL / dt.

Сохранение механической энергии

Такое уравнение можно получить с помощью одноимённого принципа. Формулируется он так: любой объект, падающий на вертикальное расстояние h, получит кинетическую энергию, равную той, которую потерял при падении. Изменение потенциальной энергии выражается: Δ U = mgh, тогда как кинетическая (отвес начал движение с покоя) представлена формулой: Δ K = 1/2 mu².

Поскольку, как известно, никакая энергия не теряется, выигрыш в одном должен быть равен потере в другом: 1/2 mu² = mgh.

Колебательные движения

Период колебаний математического маятника (простого гравитационного) зависит от его длины, локальной силы тяжести и в небольшой степени от максимального угла, от которого отвес отклоняется от вертикали θ 0, называемого амплитудой.

Он не зависит от массы груза. Если амплитуда ограничена малыми колебаниями, то на период T, время, необходимое для полного цикла является: T≈ 2 π √ L/g. При этом L — длина маятника, а g — местное ускорение гравитации.

Нужно сказать, что для небольших колебаний период не зависит от амплитуды. Такое свойство называется изохронизмом, именно оно стало причиной того, что маятники используются для хронометража. Последовательные колебания маятника, даже если они меняются по амплитуде, занимают одинаковое количество времени. Для большого размаха свойственно увеличение периода с каждым раскачиванием, поэтому он длиннее, чем задано уравнением, отражающим частоту колебаний математического маятника.

Период возрастает до бесконечности как только θ 0 приближается к 180°, так как это значение является нестабильной точкой равновесия для маятника. Истинный период может быть записан в нескольких различных формах, например, бесконечный ряд: T = 2 π √ L/g )1+ 1/16 θ²/º + 11/3072 θ ⁴/º + . ). Разница между истинным и периодом небольших колебаний называется круговой ошибкой. В случае с типичными напольными часами, у которых маятник имеет размах 6° и, следовательно, амплитуду 3° (0,05 радиана), разница составит около 15 секунд в день.

Формула математического маятника, при малых колебаниях, когда он приближается к гармоническому осциллятору, и его движение, как функция времени t, находит выражение следующим образом: θ(t) = θₒ cos (2 π / T * t + ⱷ). Где фи (ⱷ) — постоянная величина, зависящая от начальных условий. Для маятников этот период незначительно меняется в зависимости от некоторых факторов, например:

  • плавучесть и вязкостное сопротивление воздуха;
  • масса нити или стержня;
  • размер и форма отвеса и способы его прикрепления к шнуру;
  • гибкость и растяжение нити.

Если необходимы точные расчёты, конечно, все эти поправки должны учитываться.

Составной маятник

Другое название — физический, представляет собой любое качающееся твёрдое тело, свободно вращающееся вокруг фиксированной горизонтальной оси. Соответствующая эквивалентная длина — L, а для расчёта времени используется расстояние от оси до центра колебаний. Эта точка расположена над центром массы на расстоянии от оси, традиционно называемым радиусом колебаний, который зависит от распределения веса груза.

Христиан Гюйгенс в 1673 году доказал, что точка вращения и центр колебаний взаимозаменяемы. Это означает, если какой-либо маятник перевёрнут и ротирован от оси, расположенной в его предыдущем центре колебаний, он будет иметь тот же период, что и раньше, и новый центр будет находиться в старой точке вращения.

В 1817 году Генри Кэтер использовал эту идею для создания обратимого маятника, теперь известного под именем создателя, для улучшения измерений ускорения под действием силы тяжести.

Читайте также:  Как правильно называется морозовская больница

Историческая хроника

Одним из самых ранних известных применений маятника было устройство сейсмометра (I века) китайского учёного династии Хань Чжан Хэна. Его функция состояла в том, чтобы раскачивать и активировать один из серии рычагов после того, как он был нарушен тремором землетрясения, которое происходило далеко от места измерения. Освобождённый рычагом, маленький шарик выпадал из устройства в форме урны в одну из восьми горловин металлической жабы внизу, в восьми точках компаса, что указывало направление землетрясения.

Многие источники утверждают, что египетский астроном X века Ибн Юнус использовал маятник для измерения времени, но это была ошибка, возникшая в 1684 году с британским историком Эдвардом Бернардом.

В эпоху Возрождения большие маятники с ручной накачкой использовались в качестве источников энергии для ручных поршневых машин, таких как пилы, сильфоны и насосы. Леонардо Давинчи сделал много рисунков движения маятников, хотя и не осознавал его значения для хронометража.

Исследования Галилея

Итальянский учёный Галилео Галилей был первым, кто начал изучать свойства маятников, начиная примерно с 1602 года. Самый ранний существующий отчёт о его исследованиях содержится в письме Гвидо Убальдо дель Монте из Падуи от 29 ноября 1602 года. Его биограф и ученик, Винченцо Вивиани, утверждал, что его интерес был вызван около 1582 года, когда физик раскачивал люстры в соборе Пизы.

Галилей обнаружил важнейшее свойство, которое делает маятники полезными в качестве хронометриста, называемое изохронизмом; период маятника приблизительно не зависит от амплитуды или ширины качания. Он также обнаружил, что период не зависит от массы отвеса и пропорционален квадратному корню из длины всей конструкции. Сначала он использовал маятники свободного вращения в простых приложениях синхронизации.

Его друг — врач Санторио Санторий, используя наработки Галилея, изобрёл прибор, который измерял пульс пациента. В 1641 году Галилео задумал и продиктовал своему сыну Винченцо конструкцию маятниковых часов. Тот начал строительство, но не завершил его, поскольку умер в 1649 году. Так, появился первый гармонический осциллятор, использованный человеком.

Маятниковые часы

Первый образец построил в 1656 году голландский учёный Христиан Гюйгенс. Это было значительное улучшение по сравнению с существующими механическими часами. Их точность была улучшена с отклонений от 15 минут до 15 секунд в день. Маятники распространились по Европе, так как все существующие часы стали модифицироваться.

Английский учёный Роберт Гук изучил конический маятник (около 1666), который мог свободно колебаться в двух измерениях, а груз вращаться по кругу или эллипсу. Он использовал движение этого устройства в качестве модели для анализа орбитального движения планет. Гук предложил Исааку Ньютону в 1679 году свои наработки.

Он утверждал, что составляющие орбитального движения состояли из инерционного движения по касательному направлению и привлекательного движения в радиальном направлении. Это сыграло свою роль в формулировке Ньютоном закона всемирного тяготения. Роберт Гук также был ответственным за то, что ещё в 1666 году предположил, что маятник можно использовать для измерения силы тяжести.

Во время своей экспедиции в Кайенна (Французская Гвиана) в 1671, Жан Рише обнаружил, что там часы с маятником шли на 2,5 минуты медленнее, чем в Париже. Из этого он сделал вывод, что сила гравитации была ниже в Кайенне. В 1687 году Исаак Ньютон в Principia Mathematica показал, что это произошло потому, что Земля была не настоящей сферой, а слегка сплюснутой (сплющенной на полюсах) от действия центробежной силы из-за её вращения, это и вызывает увеличение силы гравитации.

Портативные маятники стали совершать рейсы в дальние страны, в качестве прецизионных гравиметров для измерения ускорения свободного падения в разных точках Земли, что в итоге привело к определению точной модели формы планеты. Затем последовало превращение исследований и выводов учёных в новые классы приборов, с дополнительными параметрами. Например:

  • 1721 г. — маятник с температурной компенсацией;
  • 1851 г. — маятник Фуко.

В 1930 году решение задачи по точному хронометражу было найдено, в 1921 был изобретён кварцевый генератор.

Источник