Меню

Как называлась аксиома параллельных прямых в началах евклида ответ

Аксиомы и постулаты Евклида в современном изложении

Этап № 1. Перечисление Основных Понятий.

Итак. Основные Понятия. Математики говорят прелестно: это элементарные объекты, которые не определяются, а лишь называются. Впрочем, маленькое добавление есть.

В современной аксиоматике геометрии Основные Понятия делятся на две группы:

а) Основные Образы;
б) Основные Соотношения.

Вообще говоря, сейчас есть по меньшей мере две существенно различные аксиоматические схемы. Дальше мы будем пользоваться той, в которой Основные Образы таковы:

1) точка;
2) прямая;
3) плоскость.

Теперь посмотрим, что представляют собой Основные Соотношения. Они формулируются так:

1) принадлежать;
2) лежать между;
3) движение.

Основные Понятия установлены. Теперь можно перейти ко второму этапу.

Этап № 2. Основные Аксиомы.

Если строго придерживаться терминологии, введенной чуть ранее, надо было бы сказать так: двум различным точкам может принадлежать одна, и только одна, прямая. И далее в том же духе. Как хорошее упражнение рекомендую на основе этой аксиомы доказать теорему: «Две прямые имеют лишь одну общую точку».

Всего в евклидовой геометрии сейчас различают пять групп аксиом. Это:

1) аксиомы соединения;
2) аксиомы порядка;
3) аксиомы движения;
4) аксиома непрерывности;
5) аксиома о параллельных.

Этап № 3. Перечисление Основных Определений.

Очевидно, мы должны были раньше дать определение этого понятия при помощи Основных. Это довольно легко можно сделать. Читатели могут проверить, насколько они прониклись духом дедукции, и, вооружившись списком аксиом, попытаться решить эту задачу.

Если бы оказалось, что, используя Основные Понятия, невозможно определить, что такое луч, тогда пришлось бы это понятие отнести к Основным.

В общем все остальные понятия и определения вводятся при помощи Основных, а также (внимание!) тех аксиом, которые установлены нами для Основных Понятий. Нам остался последний.

Этап № 4. формулировка теорем. Доказательство теорем.

Для наших понятий (Основных и неосновных) мы высказываем утверждения-теоремы, которые и доказываем. Это, собственно, и есть предмет геометрии. Я сейчас ещё раз хотел бы повторить, что в такой постановке геометрия превращается в совершенно абстрактную игру наподобие шашек либо, ещё лучше, шахмат.

Для решения этой «теоремы» игрок в ходе партии доказывает десятки лемм (вспомогательных теорем), выбирая всякий раз лучший, по его мнению, ход в данной позиции. Впрочем, отличие игр от геометрии есть. Оно состоит в том, что очень часто партнёрами принимаются неправильные «доказательства». В шахматах, скажем, не сформулированы (неизвестны) строгие логические критерии оценки каждого хода или позиции. В геометрии они есть. В ней всегда можно установить, что вновь сформулированная теорема противоречит предыдущим теоремам, а значит, противоречит и более ранним, а значит. Разматывая клубок до конца, мы приходим к двум возможностям.

Или мы допустили ошибку в нашем рассуждении, или теорема, которую мы вновь сформулировали, ошибочна.

Первая возможность малоинтересна для науки; она показывает лишь то, что мы плохо владеем математикой.

Зато во второй содержится определённый и часто очень важный результат. Если мы убедились, что наша гипотеза (теорема) неверна, следовательно, верны другие теоремы, именно те, что противоречат нашей. Если таких противоречащих теорем лишь одна, то вашим рассуждением мы её доказали.

Смилга В.П., В погоне за красотой, М., «Молодая гвардия», 1968 г., с. 32-36.

+ Ваши дополнительные возможности:

ФСА – Функционально-стоимостной анализ;
РТВ – Развитие Творческого Воображения;
ЖСТЛ – Жизненная Стратегия Творческой Личности;

ТРИЗ- педагогика ;
ТРИЗ- бизнес ;
Новые разработки по ТРИЗ?

Источник

Как называлась аксиома параллельных прямых в началах евклида ответ

Постулаты и аксиомы – свойства, принимаемые без доказательства. Все остальные предложения должны быть логически выводимы из определений, постулатов и аксиом. Различные авторы выдвигали различные требования к постулатам и аксиомам: так, Аристотель считал характерным свойством аксиом общепризнанность, Декарт – очевидность, Паскаль – недоказуемость.

Вот список постулатов Евклида.

1. От всякой точки до всякой точки можно провести прямую.
2. Ограниченную прямую можно непрерывно продолжать по прямой.
3. Из всякого центра и всяким раствором может быть описан круг.
4. Все прямые углы равны между собой.
5. Если прямая, падающая на две прямые, образует внутренние односторонние углы, в сумме меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы в сумме меньше двух прямых.

Постулаты 1–3 определяют возможность построений линейкой (без делений) и циркулем. Полезно уточнить, что под «прямой» Евклид понимает «ограниченную» прямую, то есть, в современной терминологии, отрезок.

Математики многократно обращались к системе постулатов и аксиом Евклида, пытаясь улучшить ее. Так, в XVIII в. было осознано, что постулат 4 является лишним, поскольку вытекает из других постулатов и аксиом.

Подобные исследования длительное время велись и в отношении 5-го постулата, тем более, что он, из-за сложности формулировки, казался гораздо менее очевидным, чем остальные постулаты и аксиомы. Его пытались доказать, исходя из остальных постулатов и аксиом. При этом выяснилось только, что 5-й постулат логически эквивалентен некоторым другим утверждениям (то есть они могут быть выведены из него, а с другой стороны, он сам может быть выведен из любого из них, если считать их уже установленными), но ни он, ни эти утверждения не могут быть доказаны на основе других постулатов и аксиом Евклида. Мыслима геометрия, в которой 5-й постулат не выполняется, а остальные постулаты и аксиомы выполняются (геометрия Лобачевского). Обычно в современных изложениях геометрии 5-й постулат заменяется на эквивалентную ему аксиому параллельных (встречается уже у Прокла в V в. н. э.): через точку, не лежащую на данной прямой, можно провести только одну прямую, не пересекающуюся с данной. (Слово «прямая» здесь, как обычно в современной математике, обозначает бесконечную прямую).

Списки аксиом Евклида в разных сохранившихся старинных копиях «Начал» отличаются друг от друга – возможно, не все приводимые там аксиомы (да и постулаты) принадлежат самому Евклиду. Самым распространенным является следующий список аксиом.

1. Равные одному и тому же равны и между собой.
2. И если к равным прибавляются равные, то и целые будут равны.
3. И если от равных отнимаются равные, то остатки будут равны.
4. И если к неравным прибавляются равные, то и целые не будут равны.
5. И удвоенные одного и того же равны между собой.
6. И половины одного и того же равны между собой.
7. И совмещающиеся друг с другом равны между собой.
8. И целое больше части.
9. И две прямые не содержат пространства.

Естественный вопрос, который возникает при знакомстве с постулатами и аксиомами Евклида, – чем постулаты отличаются от аксиом. В целом представляется, что аксиомы, в отличие от постулатов, касаются очень общих свойств величин самой разной природы, в т. ч., например, чисел, а не только геометрических объектов. Тем не менее, аксиома 9 противоречит такой интерпретации. Смысл этой аксиомы – в том, что два отрезка не могут сходиться в двух различных точках – то есть ограничивать некоторую фигуру конечной площади.

Мы бы сейчас сформулировали эту аксиому так: «Через две точки проходит не более одной прямой». Попробуйте понять, в чем отличие данной аксиомы от постулата 1?

Постулат 1 утверждает существование по крайней мере одного отрезка с концами в двух данных точках, а аксиома 9 – то, что таких отрезков не более одного.

Важную роль играет аксиома 7. Фактически, речь в ней идет о том, что если наложить одну фигуру на другую так, что они совпадут, то эти фигуры будут равны. Евклид всегда употребляет слово «равны» в смысле равновеликости, т. е. равенства площадей (длин, объемов, величин углов). В современном смысле слово «равны» в применении к геометрическим фигурам означает именно «совпадение при наложении»: равные фигуры отличаются только местоположением (вернее, равенство означает, что существует движение, переводящее одну фигуру в другую; под движением понимается преобразование, сохраняющее расстояние, как если бы фигура была твердой и мы могли бы ее двигать). Уже математики XVII в. понимали равенство именно в этом смысле; Г. В. Лейбниц для такого равенства ввел специальный термин – конгруэнтность. Так что аксиома 7, в современных терминах, означает, что равные (конгруэнтные) фигуры равновелики. (При этом, разумеется, равновеликие фигуры не обязаны быть равными).

С помощью «совмещения» Евклид доказывает то, что сейчас называется признаками равенства треугольников, но в дальнейшем он избегает совмещений, ссылаясь при доказательстве равенства тех или иных фигур на уже доказанные признаки равенства треугольников.

В целом, выбор постулатов и аксиом у Евклида удачен, но его система не является полной: в ней отсутствуют многие важные аксиомы (например, стереометрические). Впрочем, еще Аристотель полагал, что иногда изложения той или иной науки обходят молчанием некоторые свойства и положения вследствие их очевидности. Вполне возможно, что Евклид не ставил себе целью дать полный список утверждений, необходимых для дальнейших доказательств. Эту задачу он оставил последующим математикам.

Источник

Аксиома параллельности Евклида

Аксио́ма паралле́льности Евкли́да, или пя́тый постула́т, — одна из аксиом, лежащих в основании классической планиметрии. Впервые приведена в «Началах» Евклида [1] :

И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых.

Евклид различает понятия постулат и аксиома, не объясняя их различия; в разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, равно как не совпадает и их порядок. В классическом издании «Начал» Гейберга сформулированное утверждение является пятым постулатом.

На современном языке текст Евклида можно переформулировать так [2] :

Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше 180°, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше 180°.

Содержание

Равносильные формулировки постулата о параллельных

В современных источниках обычно приводится другая формулировка постулата о параллельных, равносильная V постулату и принадлежащая Проклу [4] (её иногда называют аксиомой Плейфера):

В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

В этой формулировке слова «одну и только одну» часто заменяют на «только одну» или «не более одной», так как существование хотя бы одной такой параллельной сразу следует из теорем 27 и 28 «Начал» Евклида.

Равносильность их означает, что все они могут быть доказаны, если принять V постулат, и наоборот, заменив V постулат на любое из этих утверждений, мы сможем доказать исходный V постулат как теорему.

Если вместо V постулата допустить, что для пары точка — прямая V постулат неверен, то полученная система аксиом будет описывать геометрию Лобачевского. Понятно, что в геометрии Лобачевского все вышеперечисленные равносильные утверждения неверны.

Пятый постулат резко выделяется среди других, вполне очевидных, он больше похож на сложную, неочевидную теорему. Евклид, вероятно, сознавал это, и поэтому первые 28 предложений в «Началах» доказываются без его помощи.

Абсолютная геометрия

Если из списка аксиом исключить V постулат, то полученная система аксиом будет описывать так называемую абсолютную геометрию. В частности, первые 28 теорем «Начал» Евклида доказываются без использования V постулата и поэтому относятся к абсолютной геометрии. Для дальнейшего отметим две теоремы абсолютной геометрии:

Попытки доказательства

За два тысячелетия было предложено много доказательств пятого постулата, но в каждом из них рано или поздно обнаруживался порочный круг: оказывалось, что среди явных или неявных посылок содержится утверждение, которое не удаётся доказать без использования того же пятого постулата.

Приведенное доказательство опирается на допущение, что расстояние между двумя параллельными прямыми постоянно (или, по крайней мере, ограничено). Впоследствии выяснилось, что это допущение равносильно V постулату.

Аналогичную ошибку сделал ибн ал-Хайсам, но он впервые рассмотрел фигуру, позже получившую название «четырёхугольник Ламберта» — четырёхугольник, у которого три внутренних угла — прямые. Он сформулировал три возможных варианта для четвёртого угла: острый, прямой, тупой. Обсуждение этих трёх гипотез, в разных вариантах, многократно возникало в позднейших исследованиях.

Ал-Абхари предложил доказательство, сходное с доказательством ал-Джаухари. Это доказательство приводит в своей книге ас-Самарканди, и ряд исследователей считал его автором самого ас-Самарканди. Доказательство исходит из верного в абсолютной геометрии утверждения о том, что для всякой прямой, пересекающей стороны данного угла, может быть построена ещё одна прямая, пересекающая стороны этого же угла и отстоящая от его вершины дальше, чем первая. Но из этого утверждения автор делает логически необоснованный вывод о том, что через всякую точку внутри данного угла можно провести прямую, пересекающую обе стороны этого угла, — и основывает на этом последнем утверждении, равносильном V постулату, всё дальнейшее доказательство.

В целом можно сказать, что все перечисленные попытки принесли немалую пользу: была установлена связь между V постулатом и другими утверждениями, были отчётливо сформулированы две альтернативы V постулату — гипотезы острого и тупого угла.

Первые наброски неевклидовой геометрии

Видимо, Саккери чувствовал необоснованность этого «доказательства», потому что исследование продолжается. Он рассматривает эквидистанту — геометрическое место точек плоскости, равноотстоящих от прямой; в отличие от своих предшественников, Саккери понимает, что в рассматриваемом случае это вовсе не прямая. Однако, вычисляя длину её дуги, Саккери допускает ошибку и приходит к реальному противоречию, после чего заканчивает исследование и с облегчением заявляет, что он «вырвал эту зловредную гипотезу с корнем». К сожалению, пионерская работа Саккери, изданная посмертно, не обратила на себя того внимания математиков, которого заслуживала, и только спустя 150 лет (1889) его соотечественник Бельтрами обнаружил этот забытый труд и оценил его историческое значение.

Во второй половине XVIII века было опубликовано более 50 работ по теории параллельных. В обзоре тех лет (Г. С. Клюгель) исследуется более 30 попыток доказать V постулат и доказывается их ошибочность. Известный немецкий математик и физик И. Г. Ламберт, с которым Клюгель переписывался, тоже заинтересовался проблемой; его «Теория параллельных линий» была издана (как и труд Саккери, посмертно) в 1786 году.

Ламберт первым обнаружил, что «геометрия тупого угла» реализуется на сфере, если под прямыми понимать большие круги. Он, как и Саккери, вывел из «гипотезы острого угла» множество следствий, причём продвинулся гораздо дальше Саккери; в частности, он обнаружил, что дополнение суммы углов треугольника до 180° пропорционально площади треугольника.

В своей книге Ламберт проницательно отметил [24] :

Мне кажется очень замечательным, что вторая гипотеза [тупого угла] оправдывается, если вместо плоских треугольников взять сферические. Я из этого почти должен был бы сделать вывод — заключение, что третья гипотеза имеет место на какой-то мнимой сфере. Во всяком случае, должна же существовать причина, почему она на плоскости далеко не так легко поддаётся опровержению, как это могло быть сделано в отношении второй гипотезы.

Ламберт не нашёл противоречия в гипотезе острого угла и пришёл к заключению, что все попытки доказать V постулат безнадёжны. Он не высказал каких-либо сомнений в ложности «геометрии острого угла», однако, судя по другому его проницательному замечанию, Ламберт размышлял о возможной физической реальности неевклидовой геометрии и о последствиях этого для науки [25] :

Замечательная работа Ламберта, как и книга Саккери, далеко опередила своё время и не вызвала интереса у тогдашних математиков. Та же судьба постигла «астральную геометрию» немецких математиков Ф. К. Швейкарта (1817) и Ф. А. Тауринуса (1826), по идеям близкую к построенной Ламбертом.

Открытие неевклидовой геометрии

Первым был Швейкарт. В 1818 году он отправил Гауссу письмо с серьёзным анализом основ неевклидовой геометрии, однако воздержался от вынесения своих взглядов на публичное обсуждение. Гаусс тоже не решился опубликовать работу на эту тему, но его черновые заметки и несколько писем однозначно подтверждают глубокое понимание неевклидовой геометрии. Вот несколько характерных отрывков из писем Гаусса, где впервые в науке появляется термин «неевклидова геометрия» [27] :

Чем большее значение мы придадим этой постоянной, тем ближе мы подойдем к евклидовой геометрии, а бесконечно большое её значение приводит обе системы к совпадению. Предложения этой геометрии отчасти кажутся парадоксальными и непривычному человеку даже несуразными; но при строгом и спокойном размышлении оказывается, что они не содержат ничего невозможного. Так, например, все три угла треугольника можно сделать сколь угодно малыми, если только взять достаточно большие стороны; площадь же треугольника не может превысить, даже не может достичь некоторого предела, как бы велики ни были его стороны. Все мои старания найти в этой неевклидовой геометрии противоречие или непоследовательность остались бесплодными, и единственное, что в этой системе противится нашему разуму, это то, что в пространстве, если бы эта система была справедлива, должна была бы существовать некоторая сама по себе определённая (хотя нам и неизвестная) линейная величина. Но мне кажется, что мы, кроме ничего не выражающей словесной мудрости метафизиков, знаем очень мало или даже не знаем ничего о сущности пространства. (Из письма к Тауринусу, 1824)

В 1818 году в письме к австрийскому астроному Герлингу Гаусс выразил свои опасения [29] :

Я радуюсь, что вы имеете мужество высказаться так, как если бы Вы признавали ложность нашей теории параллельных, а вместе с тем и всей нашей геометрии. Но осы, гнездо которых Вы потревожите, полетят Вам на голову.

Ознакомившись с работой Лобачевского «Геометрические исследования по теории параллельных», Гаусс энергично ходатайствует об избрании русского математика иностранным членом-корреспондентом Гёттингенского королевского общества (что и произошло в 1842 году).

Во вступлении к своей книге «Новые начала геометрии» Лобачевский решительно заявляет [31] :

Всем известно, что в геометрии теория параллельных до сих пор оставалась несовершенной. Напрасное старание со времён Евклида, в продолжении двух тысяч лет, заставили меня подозревать, что в самых понятиях ещё не заключается той истины, которую хотели доказывать и которую проверить, подобно другим физическим законам, могут лишь опыты, каковы, например, астрономические наблюдения. Главное заключение допускает существование геометрии в более обширном смысле, нежели как её представил нам первый Евклид. В этом пространном виде дал я науке название Воображаемой Геометрии, где как частный случай входит Употребительная Геометрия.

О доказательстве независимости

Теорема. Геометрия Лобачевского непротиворечива тогда и только тогда, когда непротиворечива евклидова геометрия.

Для доказательства этой теоремы в современной математике используются модели одной геометрии в другой. В модели для точек, прямых и других объектов первой геометрии строятся объекты в рамках второй геометрии так, что для построенных объектов выполняются аксиомы первой. Таким образом, если бы противоречие нашлось в первой системе аксиом, то оно нашлось бы и во второй.

Сложно точно указать, кто и когда доказал эту теорему.

Появлением концепции модели мы обязаны Бельтрами. В 1868 году он построил проективную модель, конформно-евклидову модель, а также локальную модель на так называемой псевдосфере. Бельтрами также был первым, кто увидел связь геометрии Лобачевского с дифференциальной геометрией.

Пятый постулат и другие геометрии

Как показано выше, добавление пятого постулата или его отрицания к остальным аксиомам Евклида формирует геометрию Евклида или геометрию Лобачевского соответственно. Для других распространённых однородных геометрий роль пятого постулата не столь велика.

Источник

Читайте также:  Обстановка на сцене как называется
Adblock
detector